
LA-UR-17-24963
Approved for public release; distribution is unlimited.

Title: Numerically Solving the Heat Equation

Author(s): Garrett, Charles Kristopher

Intended for: 2017 LANL Parallel Computing Summer Research Internship lecture

Issued: 2017-06-20

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

in Slide, you

logo/management

use one of the two

Los Alamos National Laboratory

Numerically Solving the Heat
Equation

Kris Garrett

June 2017

LA-UR-17-24453

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

| 2

The Heat Equation

@u

@t

=
@

2
u

@x

2

@u

@t

=
@

2
u

@x

2
+

@

2
u

@y

2

u(a, t) = ga(t)

u(b, t) = gb(t)

u(x, 0) = u0(x)

1D Equation 2D Equation

Boundary and Initial Conditions in 1D

Will concentrate on the 1D equation for this presentation

Los Alamos National Laboratory

| 3

Discretization in Space/Time

Means a quantity less than C Δx2

where C is problem dependent
but not discretization dependent

u(x, t) Exact solution

Approximate solution in x and t
u

n
i ⇡ u(xi, t

n)

Common discretization of second derivative

@2u

@x2
=

u(x��x)� 2u(x) + u(x+�x)

�x2
+O(�x2)

Los Alamos National Laboratory

| 4

How to Get the Approximation

u(x+�x) = u(x) +�xu0(x) +
�x2

2
u00(x) +

�x3

6
u000(x) +O(�x4)

u(x��x) = u(x)��xu0(x) +
�x2

2
u00(x)� �x3

6
u000(x) +O(�x4)

Taylor Series

Add these, subtract 2u(x), and divide by Δx2

@2u

@x2
=

u(x��x)� 2u(x) + u(x+�x)

�x2
+O(�x2)

Los Alamos National Laboratory

| 5

Discretize in Time

u

n+1
i = u

n
i +

�t

�x

2

�
u

n
i�1 � 2un

i + u

n
i+1

�

u

n+1
i = u

n
i +

�t

�x

2

�
u

n+1
i�1 � 2un+1

i + u

n+1
i+1

�

u

n+1
i = u

n
i +

�t

2�x

2

�
u

n+1
i�1 � 2un+1

i + u

n+1
i+1 + u

n
i�1 � 2un

i + u

n
i+1

�

Explicit Euler (1st Order)

Implicit Euler (1st Order)

Crank-Nicholson (2nd Order)

Los Alamos National Laboratory

| 6

Discretize in Time

• “Method of Lines” approach
• Discretized in all variables except time
• Then discretize in time

• Local truncation error for time integration: O(Δtp+1)
• Error from one time step

• Global error for time integration: O(Δtp)
• Error after all time steps
• Order reduces by 1 by accumulating all time step errors

Los Alamos National Laboratory

| 7

Two Things Always Needed

• Stability
• Consistency

Lax Equivalence Theorem for Linear PDEs

Convergence = Stable + Consistent

Los Alamos National Laboratory

| 8

What is Consistent?

• Discretization converges to original PDE

• Example with implicit/explicit Euler steps

u1
i = u(xi, t

1) +O(�x2) +O(�t2)

Los Alamos National Laboratory

| 9

Importance of Stability

Initial Condition: u0(x) = sin(x)
Boundary Conditions: u(0) = u(π) = 0

Implicit Euler
Large Δt

4x1057

Explicit Euler
Small Δt

Explicit Euler
Large Δt

Los Alamos National Laboratory

| 10

Importance of Stability

• For stability
• Explicit time integration: always subject to time step restriction

• Typically the time step restriction is based on the size of Δx
• Implicit time integration:

• Sometimes no time step restriction
• Usually less restriction on time step

• One technique to calculate time step restriction is Von Neumann Analysis

• Remember: accuracy requires a time step restriction as well

Los Alamos National Laboratory

| 11

Von Neumann Analysis

• Steps
• Apply Discrete Fourier Transform at time step n
• Apply time step to one Fourier mode
• See what conditions cause increase in size of Fourier mode

• Stability requires all initial conditions are damped
• Keeps discretization and round off errors from increasing exponentially

Los Alamos National Laboratory

| 12

Von Neumann Analysis

un
j =

N�1X

k=0

ûn
ke

�i(2⇡j/N)k

Step 1: Apply Discrete Fourier Transform at time step n

✓j

Los Alamos National Laboratory

| 13

Von Neumann Analysis

Step 2: Apply time step to one Fourier mode

û

n+1
k e

�i✓jk = û

n
ke

�i✓jk +
�t

�x

2

�
û

n
ke

�i✓j�1k � 2ûn
ke

�i✓jk + û

n
ke

�i✓j+1k
�

û

n+1
k =

1 +

�t

�x

2

⇣
e

i(2⇡/N)k � 2 + e

�i(2⇡/N)k
⌘�

û

n
k

… do some algebra …

Amplification Factor

Los Alamos National Laboratory

| 14

Von Neumann Analysis

Step 3: See what conditions cause increase in size of Fourier mode

Want value in brackets < 1
Maximum absolute value in brackets occurs for k = N/2

�t <

1

2
�x

2

����1� 4
�t

�x

2

���� < 1

Leads to the stability requirement

Los Alamos National Laboratory

| 15

Implicit Methods

• Von Neumann analysis for implicit Euler and Crank-Nicholson
• No time step restriction for stability

• But you have to solve a linear system
• Takes more time to solve than explicit method

Los Alamos National Laboratory

| 16

Implicit Methods

0

BBBBB@

1 + 2r �r
�r 1 + 2r �r

. . .
. . .

. . .
�r 1 + 2r �r

�r 1 + 2r

1

CCCCCA
un+1 = bn

Linear System for implicit Euler or Crank-Nicholson

Los Alamos National Laboratory

| 17

Implicit Methods

• Nice properties of linear system
• Strictly diagonally dominant

• Gershgorin circle theorem implies system is positive definite
• Symmetric system

• Implies system is diagonalizable (basis of eigenvectors)
• All eigenvalues are real

• If Δt is approximately Δx, then r is very big
• As Δx goes to zero, system approaches weakly diagonally dominant
• Harder for many iterative methods to converge

Los Alamos National Laboratory

| 18

Solving Linear Systems

• Dense linear algebra: O(N3) flops
• Gaussian Elimination (Lapack, Scalapack)

• Can exploit banded nature of linear system
• Can exploit sparse nature of linear system (SuperLU)

• Sparse linear algebra: O(I N2) flops I = Iterations
• Classical: Jacobi, Gauss-Seidel, SOR (Usually hand coded)
• Krylov: CG, GMRES, etc (Petsc, Trilinos)
• Multigrid, Algebraic Multigrid (Hypre, Petsc, Trilinos)
• Never stores the zeros of the matrix

Los Alamos National Laboratory

| 19

Dense Linear Algebra

• A = LU
• L lower triangular, U upper triangular
• Factorizing takes the most time: O(N3) flops
• Solve Ax = b via LUx = b
• Each triangular solve takes: O(N2) flops
• Can reuse L and U for later solves
• Really use A = PLU (Gaussian elimination with pivoting)

• For symmetric, positive definite: use Cholesky factorization
• A = L LT

• No pivoting needed

Los Alamos National Laboratory

| 20

Dense Linear Algebra

• Uses BLAS (Basic Linear Algebra Subroutines)
• Highly optimized: MKL, ACML, cuBLAS, ATLAS, OpenBLAS
• Implements for example:

• Matrix matrix multiply
• Matrix vector multiply
• Dot product of vectors

Los Alamos National Laboratory

| 21

Dense Linear Algebra

• LAPACK and BLAS originally FORTRAN libraries
• CBLAS and LAPACKE for C interface
• Can link to Fortran library from C/C++

• LAPACK library variants
• ScaLAPACK – MPI version
• MAGMA – GPU version
• SuperLU – unsymmetric, sparse systems

Los Alamos National Laboratory

| 22

Dense Linear Algebra

• Other classical decompositions
• QR decomposition: A = QR

• Q is an orthogonal matrix
• R is an upper triangular matrix
• Used for least squares problems

• Eigendecomposition
• A = QDQT for symmetric problems
• A = QTQ* for nonsymmetric problems
• Q is orthogonal or hermitian
• D is diagonal, real
• T is triangular

Los Alamos National Laboratory

| 23

Classical Sparse Linear Solvers

• Write A = N-M. Solve (N-M)x = b
• Iterate Nxk+1 = Mxk + b
• Converges if and only if ρ(N-1M) < 1 (all eigenvalue magnitudes < 1)

• Jacobi: N is the diagonal of A
• Gauss Seidel: N is the upper or lower triangular part of A

• Easy to code but converges slowly

Los Alamos National Laboratory

| 24

Classical Sparse Linear Solvers

(1 + 2r)xi � rxi�1 � rxi+1 = bi

(1 + 2r)xk+1
i = rx

k
i�1 + rx

k
i+1 + bi

(1 + 2r)xk+1
i � rx

k+1
i�1 = rx

k
i+1 + bi

Linear System

Jacobi Method

Gauss Seidel Method

Los Alamos National Laboratory

| 25

Krylov Linear Solvers

• Gets the “best answer” from a Krylov subspace
K^k(A,b) = {b, Ab, A2b, …, Ak-1b}
• CG (Conjugate Gradient) used for symmetric, positive definite systems

• Three vector recurrence relation
• GMRES (Generalized Minimal Residual) used for nonsymmetric systems

• Must hold all vectors in Krylov space
• Actually use GMRES(m): restart after m steps to reduce memory

required
• Guaranteed convergence for positive definite systems

• Note: other Krylov spaces are used for some Krylov solvers

Los Alamos National Laboratory

| 26

Krylov Linear Solvers

% Matlab version of CG from Wikipedia
function [x] = conjgrad(A, b, x)

r = b - A * x;
p = r;
rsold = r' * r;
for i = 1:length(b)

Ap = A * p;
alpha = rsold / (p' * Ap);
x = x + alpha * p;
r = r - alpha * Ap;
rsnew = r' * r;
if sqrt(rsnew) < 1e-10

break;
end
p = r + (rsnew / rsold) * p;
rsold = rsnew;

end
end

Notice only 3 extra vectors
of memory required

Also need to perform
dot products. Can
hurt parallel performance

Los Alamos National Laboratory

| 27

Multigrid Linear Solver

• Uses the classical solvers
• These solvers converge quickly for certain discrete Fourier modes
• When grid size changes, other Fourier modes converge quickly
• Solves problem on grid sizes: h, 2h, 4h, 8h, etc.
• Generally fastest solver for diffusion type equations

Los Alamos National Laboratory

| 28

Iterative Solvers

• Many iterative solvers need a preconditioner
• Ax = b
• PAx = Pb (Left preconditioner)
• PA should require less iterations
• P should be easily invertible
• There are also right and symmetric preconditioners
• Very problem dependent

Los Alamos National Laboratory

| 29

Other Important Linear Solver Topics

• Norm of vector ||v||

• Induced norm of matrix (max matrix stretches a vector)

||v||1 = |v1|+ |v2|+ . . .+ |vn|

||v||2 =
�
v21 + v22 + . . .+ v2n

�1/2

||v||1 = max{|v1|, |v2|, . . . , |vn|}

||A|| = max

||v||=1
||Av||

Los Alamos National Laboratory

| 30

Other Important Linear Solver Topics

• Condition number of a matrix

• If you solve Ax = b+e, the relative error in solution compared to the
relative error in RHS is

• This is for exact arithmetic
• This shows the error in solution given error in data

(A) = ||A�1|| · ||A||

||A�1e||
||A�1b|| (A)

||e||
||b||

Los Alamos National Laboratory

| 31

Ensuring Correctness

• You must run tests to ensure a correct answer and correct
implementation

• Verification Tests: Make sure you are actually solving the heat
equation
• Use known analytical solutions: sin(x) e-t

• Method of manufactured solution: used when there is a known source.
• Make up a solution and determine the source.
• Put that source into your solver.

Los Alamos National Laboratory

| 32

Ensuring Correctness

• Convergence Tests: Make sure numerical implementation is correct
• It is common to code incorrectly and get first order convergence of a

higher order method

• Unit Tests: Test code in every file
• Very useful for large projects
• When you find a bug, add a test to reproduce it
• Makes pinpointing errors easier
• Some projects require that every branch in code is tested

Los Alamos National Laboratory

| 33

The End

